SOME EXTREMAL PROBLEMS OF HEAT TRANSFER
IN A LAYER

Yu. N, Andreev and A, Kh. Slobodyanskii UDC 536.244: 532,546

Three extremal problems of heat transfer in a layer are formulated for the condition of re-
verse motion of the thermal medium. The results of numerical solutions of the problems are
presented in graphical form.

Wide use is made in industry of the blowing method for thermal processing of porous materials. To
obtain a more uniform temperature distribution along the height of the material being treated and to ac~
celerate the thermal process to which it is subjected, in continuous-action assemblies it is frequently the
practice to change the direction of blowing of the thermal medium in adjacent zones. This procedure is
adopted, for example, in the drying and heat treating of a mineralized coating [1]. It is necessary to have
a basis for choosing the ratio of zone lengths in the chambers for heat treating mineralized plates.

We consider a two-zone chamber for the heat treatment of a porous material, as indicated in Fig.1.
The speed of movement of the material being processed is constant and equal to w; then the blowing time of
the layer in the first zone is 7y = I,/w, whilst in the second it is Ty = Ty— Ty = (I~ I;)/w, where T, is the
total heat-ireatment time, In designing such an assembly the following problems arise.

1. For what value of 7y (T, is fixed) will the maximum heat be assimilated by the material; or, equiv-
alently, when will the maximum mean temperature of the material be attained ?

2. For what value of Ty (7, is fixed) will the minimum temperature along the height of the layer be
maximum at the instant that the heating process terminates ?
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Fig.1, Schematic of a two-zone chamber for heating
a porous material by blowing through of a thermal
medium,
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3. What choice of the ratio of T; and T, should be made to ensure that, at the instant of unloading, the
the temperature of each point of the layer will be no lower than the technologically assigned tem-
perature for a minimum total time of treatment, T, =min?

We now formulate these problems exactly, noting that the heating process may be described by known
equations for heat transfer in a layer; written in dimensionless form, they are [2, 3]:

2 —g—6 077 0=6(F 2,

3 _ e
_—%=@g-@, 0<F<Fy 8,=0(F, )

(1)

with the initial and boundary conditions
O, 0)=1;
Qg(F,,, 2)=0 for 0KZLZ;
(0, Z) =0 for Z, <Z K2,
The transition to dimensiocnal quantities is accomplished by means of the equations

R—t(FI) £t (F,2)
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where F = xacv/mw Cy is a thickness number; Z = Q{7 ~ x/wg)/(l — m)c is a time number. We observe
that to the maximumliayer temperature t there corresponds the minimum dimensionless temperature @,
We neglect the quantity x/wg in comparison with 7, assuming that T > x/wg. This assumption holds for
the majority of practical problems. For example, for a mineralized coating, T~ 200 x/wg. We thus
compute the time number Z from the equation

= %y T. (4)
(1—m)e

Moreover in our calculations we obtain somewhat excessive values of the total heating time 7,. The di-
mensionless temperature distribution in the layer at the instant of change in the blow~through direction at
Z = 74 has the form [3]

' Fo—F .
O(F, Z)=exp[—(Fo—F+ZN I, 2V {E,—F) Z,) + f expl—2Z, — 11, (2VZ7) dn. (5)
0
Taking this as the initial temperature distribution, we determine, using a result given in [4], the tempera-
ture of the layer at the instant Z = Z; that the process terminates:

F
O(F, Fo, Zy, Zy) =exp(—Z,) {H (Z,, Fy—F)+ S Y(Zy—2Zy, MUEZ, F,—F+m) dﬂ} . (6)
0
Here and henceforth,
\ F —
M(Z, F)=exp(—F) 1, (2VFZ) + [exp(—8) I, (2 v/ ZE) dE;
4]

Y (Z, F)=exp(—F) 1, (2VZF) VZIF;
I, and I; are Bessel functions of an imaginary argument.

In accord with the problems stated above, our interest centers on the following extremal properties
of the temperature distribution (6):

1, For what value of Z; € [0, Z;] (Fy, Z, are given) does the function

Fy
Dy (Zy) = S 0 {F, Fy, Zy, Zy) dF (8)
0

assume its minimum value ?

2. For what value of Z,(F,, Z,are given) does the function
b, (Z,) = max O(F, Fy, Z;, Z,). (9)

o - FE[0.F,]
attain its minimum ? : °
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3. What must be the values of Z; and Z; (F; fixed) in order that the function (9) attain a glven value
@y = @, given for the smallest possible value of Zy?

1t is not hard to see that the solution of Problem 3 can be obtained if the solution of Problem 2 is
known, The procedure is to change the given value Z; in Problem 2 as long as the function (9) has not as-
sumed a given value.

1. First of all, we note that for a one-sided blow~through into the layer a strictly monotonic temper-
ature distribution is established, whereby the layers positioned close to the plane of blowing of the thermal
medium are heated to a very high temperature.

That for arbitrary Zq, the function @ (F, Z,), defined by Eq.(5), is a strictly monotonically increas-
ing function of its argument F may easily be confirmed by a direct verification of the sign of its deriva~
tive.

Thus the main question in connection with Problem 1 may be reduced to the following. If as a result
of a one-sided blow-through into the layer a strictly monotonic temperature distribution is established,
from what side should the blow-through be produced to obtain the maximum mean temperature in the ma-
terial of the layer ?

We consider the simplest model. Assume that the initial temperature of the layer changes linearly
through its thickness:

1O, ) =2+t +k(x—1); 0<x<2 (10)

and that, after a calculated interval of time, its distribution remains the same. The temperature in the
middle of the layer is t(1) =t', Gas blowing: into the layer takes place at x = 0. It is obvious that for k

< 0 we have blowing from the "hot" side of the layer, and for k > 0 from the "cold" side. With a unit heat-
transfer coefficient we have the following equation for the temperature of the gases:

dig
— ety =1, —t —R(r—
dx 8 Rlr—1x (1)
g0 =1 0<x <2,
the solution of which is obviously of the form
tg(x) = ({} — 1 + 2k) exp (— x) - (¢' -+ kx — 2K). (12)
In addition, the amount of heat given off by the gas is determined by the expression
2
Q= [ tg—1) dx= (®—t) [1—exp (— 2)] — 2k exp (—2). (13)

0

From this it is evident that the gas releases the maximum amount of heat whenk <0, i.e,, for blow-
through from the "hot" side,

This holds true even in the general case of an arbitrary strictly monotonic initial temperature dis-
tribution in the layer.

Since each change in the blow-through direction, at least in the initial stage of the process, leads
to blowing of the thermal medium from the "cold" side of a strictly monotonic temperature distribution in
the layer, we may expect a lowering of the mean temperature of the layer in comparison with the case in
which the blow-through is continued in the same direction. The numerical calculations of the values of the
function (8), which we carried out for various values of Z;, confirm this result.

The values of the function ®,(Z,) obtained in these calculations are presented in Table 1. We recall
that to the minimum of the function ®4(Z), Z; € {0, Zy], which is attained on the boundaries of the domain
where the function is defined |Z; = 0; Z; = Z, li, there corresponds the maximum of the dimensional mean
temperature of the material in the layer.

TABLE 1, Values of the Function ®(Z,)

Zy ’ 0,0 0.5 1,0 1,5 . 2.6 2,6 3,0
Fy=1; Z,=3 |0,133990|0,142661 |0,146338 | 0,147831 | 0, 146337 0,142661 { 0,133990
Fy=3; Z,=3 |0,318705]0,351521|0,372277{0,378775|0,37227810,351521 | ©0,318705
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Fig.2, Dimensionless temperature distribution over
the layer at various lengths of the first treatment
zone Zy; Fo=1, Zy=3.

It is of interest that the function is symmetric with respect to the point Z; = Z/2.

We have not been successful in obtaining a rigorous proof, by means of an analytical study, that the
function (8) is symmetric, We note that for points which are symmetric about the value Z; = Zy/2 only the
values of the function ®4(Z,) are equal, i.e., the areas under the temperature distributions obtained, which
are themselves temperature distributions, differ substantially from one another, This is shown in Fig. 2,
where distributions of the dimensionless temperature of the layer are presented for Example 1. The dis-
tributions for the symmetric values Z; = 0.5, Z; = 2.5, and Z; = 1.0; Z; = 2 .0, which correspond to one and
the same mean temperature, are: 23(0.5) = 2,(2.5) = 0.142661, 4(1,0) = $,(2.0) = 0,146337; from the point
of view of the temperature level attained (the value of the function @1(21)) the values are substantially dif-
ferent: $4(0.5) = 0.20795; ®,(2.5) = 0.18168; ®,(1,0) = 0,18464; ®,(2.0) = 0.15452,

2, In formulating an algorith for calculating the values of ®,(Zy) for an arbitrary fixed value of Z,,
study of the derivative of the function ©® (F, Fy, Z;, Z;) with respect to F plays an essential role; this de~
rivative is given by

dO(F, F,, Z,, Z
dF

FF) = “EﬂWJMMAAW%+AB

F
W@y Fo= P [ ¥ (G2, 0¥ (@, Fo—F ) i) (19

It may be verified directly that the function £(F) has not more than one zero on the interval [0, Fy]
for an arbitrary fixed value of Z;. Moreover, if there exists a point F*, satisfying the condition f(F™*)
= 0, then at this point the function ®(F) attains a strict maximum with respect to F,

Using this result, we can readily formulate an algorithm for calculating the function ®4(Z;) for arbi-
trary Zy.

A search for the minimum of the function ®4(Z;) with Z, € [0, Zy] may be organized by means of an
arbitrary known method of search for the extremum of a unimodal function. In our calculations we used
a search method over discrete points (Fibonaceci's method) [5].

The value of Z] (the minimum point of the function (9)) was calculated with an accuracy of 10~3, The
integrals in Eqgs.(6) and (13) were comptted by Gauss' method for n = 14 [6]. The calculations were per-
formed on the M~220 computer in the range 1 = Fy = 10; 0,01 =® = 1,00,

Results of the calculations appear in Figs.3 and 4.

For given values of the numbers Fj and Z;, according to Fig.3, a limiting temperature level @
1(21) may be determined, which is attainable in a two-zone chamber; according to Fig.4, we can deter-—
mine the ratio Z}/Z,, which is the ratio of the length of the first zone to the total chamber length in an
optimum construction, and also the coordinate Fyy, of the point with minimum temperature,

1441



PR —
7 N
5
H BANNANANINY
MIRAARNNNANNNY
; NN N ~ Fig.3. Graphs for calculation of minimum

temperature ®y, in layer section when ma-~
terial is treated in a two~zone chamber with

/V//'/V
7
L~
Z
7

7 \X\ ‘\%\ \‘K’\\ \L\ an optimum zone le;xgth ratio Opy = (t?; —t(Fpp
g OO SEm Foo 2, Zp)/ (s —t%.

AWV

2

»N
N9
i1
e
N
/i =y
<
Q
e
r o

A1
-+

3. The algorithm for solving this problem with the aid of Figs.3 and 4 is as follows, For given val-
ues of O, and Fy we determine (Fig.3) the total layer heating time Z, (total chamber length) and then,
knowing the values of Fy and Z,, we determine the ratio Z}/ Z, and the coordinate F,, (Fig.4) of the cold
point of the layer itself.

We consider first the calculation of a two-zone chamber for heat treatment of a mineralized coating
of minimum length (Problem 3). The initial data are: xy=0.1 m; w_=0.4 m/sec; o =20 10% % 1,163 kJ

/m? - sec -deg; cg = 4190 X 0.3 kJ/m? -deg; ¢ = 600 X 4190 kd/m? - deg; m = 0.96; t0 = 20°C; th =210°C,

We wish to calculate the zone length ratio of a two-zone heat-treatment chamber which ensures heat-
ing of each point of the coating to a given temperature ty, = 180°C in the minimum time. From Figs.(3)
and (4) we determine the values of the thickness number Fj = 4,85 and the temperature Oy, = 0.158; from
Fig.3 we find Z, = 7.80. Next, from Fig.4 we have Fp, = 0.24; Z] = 0.86.

For a single-zone heat-treatment chamber the given temperature in this example is reached only
for Zy = 9.2, When the zone lengths are equal, i.e,, when Z; = Z,/2, the value ®, = 0,158 is reached only
for Z, = 9.6, i.e., in both cases we have an increase in the total heating time of roughly 20% in comparison
with the optimum.

We consider yet another example. Assume we have the following fixed values: Fy = 7.0 and Z; = 9.0,
What will be the maximum dimensionless temperature ®,,) at a layer section for various zone length ra-
tios ?
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Fig.4. Graphs for calculation of residence time of material in
first zone (Zg) and for calculation of coordinate Fm of point with
minimum temperature for a two-zone chamber with an optimum
zone length ratio, "
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1. One-sided blow-through, Z; = 0; ®, = 0.354,
II. Two-zone chamber for Z; = Zy /2 = 4.5; @, = 0.331.
I, Optimum zone ratio, Z; = Z] = 0.88Z, = 7.9; @ = 0.245,

A comparison of the results obtained in the two-zone heat treatment of a layer with an optimum zone
length ratio with the one~zone and two-zone treatment with equal zones shows that the saving in heating
time of a layer to a given temperature, resulting from optimization, amounts to 5 to 25%, depending on the
initial criteria of the problem.

For a significant layer "thickness" (F, > 5) and for large heating "times" Z; > 20, the optimum zone
ratio, as can be seen from Fig.4, is ZQ/ZO & 0,95, Inthis region the two-zone chamber with equal zones
results in significant losses at a definite layer temperature, Thus, for Fy =9 and Z; = 21, in the single-
zone chamber we have a maximum dimensionless temperature ®y, = 0.016086; in the two-zone chamber,
with Z; = Zy/2 = 4.5, we have @, = 0.0843; for the optimum zone ratio, Z; = Z] = 0,94Z, @, = 0,00981,

The graphs presented here can be used both for designing two-zone heat-treatment chambers for heat
treating porous materials by a blow-through process and also for estimating the effectiveness of operat-
ing assemblies of a similar type.

NOTATION

T is the time;
is the coordinate along the height of the layer;

1, 1, are the length of the first zone of the thermal~treatment chamber and the overall length of the
chamber;

T Ty are the time of treatment in the first zone and the overall heating time of the layer;

tix, T is the temperature of the layer and the heat-transfer agent;

t‘é, £ are the temperature of the heat-transfer agent at the entrance to the layer and the initial tem-
perature of the layer;

tm is the minimum temperature in the layer section;

Xm is the coordinate of the point with the minimum temperature;

7§ is the optimum time of treatment in the first zone;

X is the thickness of the layer;

Cgr C are the specific heat capacity of the heat-transfer agent and the material of the layer;

m is the coefficient of porosity;

ay is the volume heat-transfer coefficient;

Vg is the rate of injection of the heat-transfer agent;

w is the rate of passage of the material through the treatment zones;

k is the angle of inclination of the linear temperature distribution in the layer;

t is the mean temperature of the layer.
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